成人高考高起点《文数》重点:数列的通项与求和

qicheng 41 0

  数列的通项与求和

  数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是成人高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.

  难点磁场

  设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.

  (1)写出数列{an}的前3项.

  (2)求数列{an}的通项公式(写出推证过程)

  (3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).

  案例探究

  [例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

  (1)求数列{an}和{bn}的通项公式;

  (2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有 =an+1成立,求 .

  命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.

  知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.

  错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1、b1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.

  技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.

  解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,

  ∴a3-a1=d2-(d-2)2=2d,

  ∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

  ∴ =q2,由q∈R,且q≠1,得q=-2,

  ∴bn=b·qn-1=4·(-2)n-1

  (2)令 =dn,则d1+d2+…+dn=an+1,(n∈N*),

  ∴dn=an+1-an=2,

  ∴ =2,即cn=2·bn=8·(-2)n-1;∴Sn= [1-(-2)n].

  以上便是“成人高考高起点《文数》重点:数列的通项与求和”的相关介绍,希望可以帮助到大家,更多成人高考相关资讯,可以关注专升本网会不断为大家更新成考相关内容,帮助大家全方面了解云南成考自考。这是一家专业的线上成人提升学历机构,以安全、高效、便捷的服务品质深受广大考生喜爱,希望可以帮助到大家,更多成人高考自考相关资讯,提供给考生全面的、合适考生的报考方案。


抱歉,评论功能暂时关闭!